Swift Observation of GRB 091020

J. L. Racusin (NASA/GSFC), S. R. Oates (UCL/MSSL), A. Beardmore (U Leicester), H. Krimm (NASA/GSFC/USRA) for the Swift Team

1 Introduction

BAT triggered on GRB 091020 at 21:36:44 UT (Trigger 373458) (Racusin, et al., GCN Circ. 10048). This was a rate-trigger on a intermediate length burst with $T_{90} = 34.6$ sec. Swift slewed to this burst immediately and XRT began follow-up observations at T + 81 sec, and UVOT at T + 89 sec. Our best position is the UVOT location $RA(J2000) = 175.760deg \ (11h42m55.2s), \ Dec(J2000) = +50.97833deg \ (+50d58'42.0'')$ with an error of 0.5 arcsec (radius, 90% confidence).

2 BAT Observation and Analysis

Using the data set from T-240 to T+962 sec, further analysis of BAT GRB 091020 has been performed by Swift BAT team (Palmer, et al., GCN Circ. 10051). The BAT ground-calculated position is $RA(J2000) = 175.727deg \ (11h42m54.4s)$, $Dec(J2000) = +50.977deg \ (+50d58'36.6'')$ with an error of 1.0 arcmin, (radius, systematic and statistical, 90% containment).

The mask-weighted light curves (Fig.1) began with a small hump at T-10 sec, rising sharply to a peak at T+2 sec and decaying exponentially out to T+50 sec, with a much smaller peak superimposed at T+33 sec. T_{90} (15 - 350 keV) is 39.0 ± 4.9 sec (estimated error including systematics).

The time-averaged spectrum from T-8.7 to T+38.3 sec is best fitted by a simple power law model. The power law index of the time-averaged spectrum is 1.53 ± 0.07 . The fluence in the 15-150 keV band is $3.7 \pm 0.1 \times 10^{-6}$ ergs/cm². The 1-sec peak photon flux measured from T+1.14 sec in the 15-150 keV band is 4.2 ± 0.3 ph/cm²/sec. All the quoted errors are at the 90% confidence level.

3 XRT Observations and Analysis

Using 1088 sec of XRT Photon Counting mode data and 1 UVOT image for GRB 091020, we find an astrometrically corrected X-ray position (using the XRT-UVOT alignment and matching UVOT field sources to the USNO-B1 catalogue): RA(J2000) = 175.73005deg~(11h42m55.21s), Dec(J2000) = +50.97839~(+50d58'42.2") with an error of 1.8 arcsec (radius, 90% confidence). This position is within 4.0 arcsec of the initial XRT position, and 0.2 arcsec from the optical afterglow candidate, reported by Oates et al., GCN Circ. 10054.

The 0.3-10~keV light curve (Fig.2) shows an initial steep decline with a slope of $3.5^{+0.7}_{-0.4}$, following by a shallower slope of 0.89 ± 0.04 , beginning at $T+135\pm20~sec$. At $(6.7^{+0.9}_{-1.1})\times10^3~sec$ the light curve breaks with a slope of 1.38 ± 0.04 . There is a small flare superimposed at T+190~sec.

Three segments of the X-ray lightcurve can be modeled with an absorbed power-law with spectral indices of 2.34 ± 0.14 , 2.15 ± 0.13 , and $2.22^{+0.07}_{-0.08}$, respectively. The best fitted absorption column at a redshift of 1.7 (Xu, et al., GCN Circ. 10053) is $9.4^{+2.1}_{-2.0} \times 10^{21}$, $5.4^{+1.8}_{-1.7} \times 10^{21}$, and $6.4^{+0.9}_{-1.0} \times 10^{21}$ cm⁻², respectively in addition to the Galactic value $(1.4 \times 10^{20} \ cm^{-2})$.

The average observed (unabsorbed) flux over 0.3-10~keV for the three spectral intervals corresponding to the light curve segments excluding the flare (spanning a time of 80-120, 300-6500, $6500-1\times10^6$ seconds after the trigger, respectively) is 1.1×10^{-9} , 5.0×10^{-11} , 9.8×10^{-13} (1.7×10^{-9} , 6.4×10^{-11} , 1.3×10^{-12}) $ergs/cm^2/sec$, respectively.

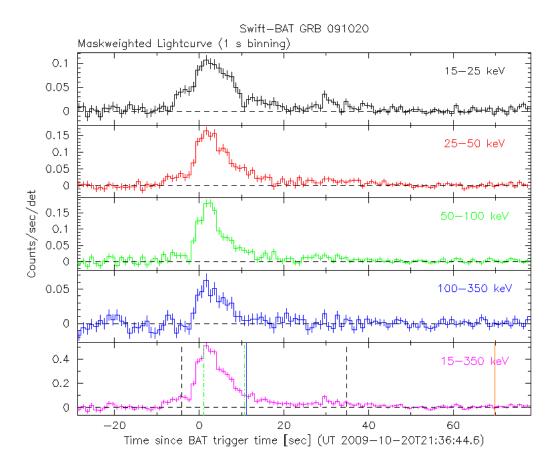


Figure 1: BAT Light curve. The mask-weighted light curve in the 4 individual plus total energy bands. The units are counts/sec/illuminated-detector and T_0 is 21:36:44 UT.

4 UVOT Observation and Analysis

The UVOT began observing the field of GRB 091020 at 21:38:13 UT, 89 sec after the initial BAT trigger (Racusin et al., GCN Circ. 10048). We detect the optical afterglow in all filters at the refined UVOT position $RA(J2000) = 175.760deg \ (11h42m55.2s), \ Dec(J2000) = +50.97833deg \ (+50d58'42.0'')$ with an error of 0.5 arcsec (radius, 90% confidence). This position is consistent with the enhanced XRT position (Beardmore et al., GCN Circ. 10050). The detection in the white, v, b and u filters and the weak detection in the uvu1 filter is consistent with a redshift $z \sim 1.7$, which is consistent with the redshift reported by NOT (Xu, et al., GCN Circ. 10053).

The multi-filter UVOT light curve (Figure 3) shows an initial rise followed by a power-law decay with similar shape to that of the XRT light curve. These magnitudes are not corrected for the Galactic extinction corresponding to a reddening of $E_{B-V}=0.02$ mag (Schlegel et al., 1998, ApJS, 500, 525). The photometry is on the UVOT photometric system described in Poole et al. (2008, MNRAS, 383,627).

10⁶

10⁵

 10^{-15}

100

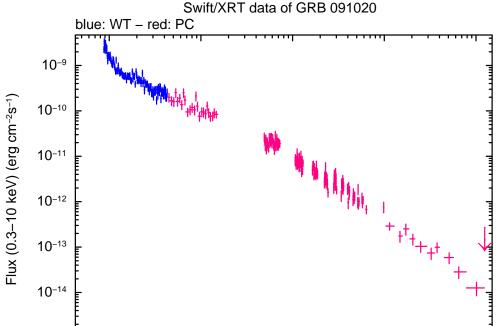


Figure 2: XRT Lightcurve. Counts/sec in the 0.3-10 keV band: Window Timing mode (blue), Photon Counting mode (red). The approximate observed (unabsorbed) conversion is 1 count/sec = $\sim 3.4 \times 10^{-11}$ ($\sim 4.4 \times 10^{-11}$) $ergs/cm^2/sec$.

104

Time since BAT trigger (s)

1000

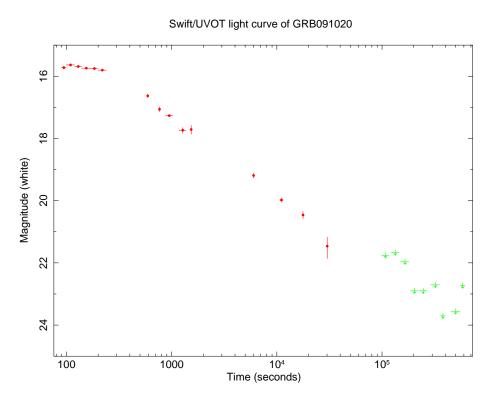


Figure 3: UVOT white filter light curve. The red points are detections, and the green points are 3-sigma upper limits.